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1 Introduction

The periodic rise and fall of the sea surface has fascinated man from the earliest ages.
Obviously people must early have noticed the connection between high and low water
and the position of the Moon and the Sun. Due to the regularity of the phenomena it
became closely associated with the flow of time as the very name tides indicates.

When Newton (1697) first formulated the theory of gravitation he also discovered
the nature of the tide generating force. Newton’s equilibrium theory of tides explained
the observed dominant semidiurnal periodicity of ocean tides. Up to then it had been
a mystery that high water occurs both with Moon overhead and also about 12 hours
later when the Moon is on the other side of the earth. Today Newton’s equilibrium
theory (see section 2) provides the correct tide generating force to which the oceans
respond hydrodynamically in a rather complicated fashion. Although Newton discov-
ered the true astronomic nature of the tide, it was Laplace (1775) who derived the
first hydrodynamic equations of ocean tides. Laplace’s tidal equations contain the tide
generating force in terms of Newton’s equilibrium tide as the forcing function.

Figure 1: The Moon is barren and lifeless, but its gravitational force induces strong tidal currents
in the world’s oceans and thereby affects life on the Earth. Here the Moon is photographed in perigee
position when it is closest to the Earth.

Due to the complexity of Laplace’s tidal equations little progress was made in
solving these equations with realistic bottom topography and coastlines before powerful
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Periodic cycles of the Moon

There are four important cycles of the Moon with periods 27–29 days.

Nr. Type Period
(mean solar day)

1 Recurrence of Moon’s phase (synodic Moon). 29.5306
2 Oscillation in Moon’s distance.

from Earth (anomalistic Moon). 27.5546
3 Oscillation in the Moon’s declination. 27.2122
4 Time of one orbit around the ecliptic relativ

to the vernal equinox (sidereal Moon). 27.3216

If two periodic events (signals), recurring with period T1 and T2 respectively, are in phase at time
t = 0 they will be in phase again after t = Tn = nT1 where the integer number n is determined
from nT1 = (n + 1)T2. This leads to n = T2/(T1 − T2) and Tn = T1T2/(T1 − T2) ( T1 > T2).
With T1= 29,5306 days and T2 = 27,5546 days we find that it will be Tn = 1.13 year between
the recurrence of perigee at either full or new Moon. Similarly it will take 8.9 years between
each time perigee coincides with the vernal equinox.

computers became available. Since then Laplace’s equations have been the basis of most
modern tidal modelling.

The observation and mathematical treatments of tides were greatly advanced by
Lord Kelvin (Thomson, 1868) who introduced the method of harmonic analysis of tides.
Both the astronomical forcing and the responding ocean tide are represented as a series
of harmonic tidal components each with its characteristic frequency, determined from
the regular almost periodic motion of the Moon and the Sun. With this representation
the time dependent ocean tides, can be accurately described when a few time indepen-
dent harmonic constants in terms of amplitude and phases are known. The harmonic
constants are characteristic for every geographical point in the ocean and along the
coasts. These constants may be determined by harmonic analysis of observed time
series of sea level changes, with regular and sufficient frequent time sampling, or by
solving the Laplace’s tidal equations with realistic bottom topography and coastline
configurations.

The tides particularly in coastal waters appear as a markly dominant part of the
ocean current variability. Since sea level changes and shifting currents associated with
the tides are of great importance for all maritime activity , coastal engineering and
management there is an enormous number of scientific publications devoted to the
subject. The reviews by Cartwright (1977), Schwiderski (1980, 1986), and Davies et
al. (1996) survey central parts of the literature. It is impossible to cover this vast subject
within the frame of this short lecture series. We will therefore restrict to discuss in
some detail, three important aspect, the nature of the tide generating force, harmonic
analysis of tide and some aspects of tidal modelling. The presentation and examples
in this lecture series rely heavily on my own and my co-workers research on tides and
may for this reason be somewhat biased with respect to citations and references.
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2 Tide generating force

The tide generating force is due to the gravitation of the Moon and the Sun. In order
to see this we shall consider a system of two spherical globes, the Earth and the Moon,
with masses me and ml respectively. From the center of the Earth, O, to a point P on
the surface of the Earth we draw a distance vector ~r and the corresponding distance
vectors from O and P to the Moon (M) are denoted ~R and ~d respectively (fig. 2). The

length of these vectors are written r = |~r|, R = |~R| and d = |~d|. Since d and R are
large compared to the radius of the Moon it can be regarded as a point, M , and we
obviously have

~r + ~d = ~R (1)
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Figure 2: The system Earth-Moon. N and Z denote North and the Zenit direction respectively.

From the law of gravitation (Newton 1697), the gravitational force on the Earth is

G
meml

R2

~R

R
(2)

where G is the gravitation constant. This force gives the center of the Earth an
acceleration.

~a0 = G
ml

R2

~R

R
If we disregard the rotation of the Earth and consider the Earth to be rigid and unde-
formable every point on the Earth will experience the same acceleration. The acceler-
ation at the point P due to the direct gravitational pull of the Moon is

~ap = G
ml

d2

~d

d

The difference between ~ap and ~ao is the tidal acceleration

~a = ~ap − ~ao = Gml

[
~d

d3
−

~R

R3

]
(3)
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which corresponds to a tidal force pr unit mass. The vector ~a is obviously contained
in the plane through O, P and M .
From the trigonometric cosines relation for the triangle OPM

d2 = R2 + r2 − 2Rr cos θm

where angle θm is the angular zenit distance of the Moon. Hence

d = R

√
1 − 2

r

R
cos θm +

r2

R2

By expanding the square root in a series after the small parameter r
R

and neglecting

terms of order
(

r
R

)2
.

d ∼= R
[
1 − r

R
cos θm

]
+ O

( r

R

)2

Again by series expansion

1

d3
=

1

R3(1 − r
R

cos θm)3

∼=
(1 + 3 r

R
cos θm)

R3

By using the latter relation together with eq. (1), the tidal acceleration, eq. (3), can
be written:

~a =
Gmlr

R3

[
3

~R

R
cos θm − ~r

r

]
(4)

When introducing the acceleration of gravity at the Earth’s surface

g =
Gme

r2

the expression (4) can be written

~a = g
ml

me

( r

R

)3

[
3

~R

R
cos θm − ~r

r

]
(5)

which shows that the tidal acceleration is a very small fraction of g. With parameters
for the Earth–Moon system, ml

me
= 0.012, r

R
= 0.017 the fraction is of the order 10−7.

Equation (5) shows that ~a is a sum of a vertical vector always pointing downward

along the vertical and a vector in the direction ~R i. e. towards the Moon for θm < π
2

and opposite ~R when π
2

< θm < π. Hence there will be a component of the acceleration
directed either towards the point A under the Moon or towards the antipodal point B
on the other side of the Earth (fig. 3).
The vector ~a can be decomposed in a vertical component, ar, and a horizontal com-
ponent, ah. The latter being directed along the great circle arch APB (fig.2). Since
~R · ~r = Rr cos θm we have

ar = ~a · ~r

r
= g

ml

me

( r

R

)3

[3 cos2 θm − 1] (6)
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Figure 3: The direction of the tidal acceleration.

and since |~R × ~r | = Rr sin θm

ah =
∣∣∣~a × ~r

r

∣∣∣ =
3

2
g
ml

me

( r

R

)3

sin 2θm (7)

Here we can introduce the Moon’s horizontal parallax πm defined by

sin πm =
r

R

which is a commonly used parameter for the position of the Moon.
Imaging now that the Earth is covered by a thin sheet of water subject to the tide

generating force of the Moon. In order to be in equilibrium the surface of the water
will deform in order to set up an adverse pressure gradient counteracting the horizontal
tidal force. The equilibrium condition is

−g
∂η̃m

r∂θm

− 3

2
g
ml

me

sin3 πm sin 2θm = 0

where η̃m is the vertical displacement of the water. By integration we obtain

η̃m =
3

4

ml

me

r sin3 πm cos 2θm + C

where C is a constant of integration which is determined by the requirement that there
is no change in water volume by the deformation. This leads to C = 1

3
and

η̃m =
1

4

ml

me

r sin3 πm(3 cos 2θm + 1) (8)

This expression shows that there will be high water under the Moon at A and also the
point B on the opposite side of the Earth. A zone of low water extends around the
globe with lowest water level for θm = π

2
as sketched in figure 5.
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Figure 4: The horizontal component of the tidal force is directed toward a point right under the
Moon and the image on the opposite side of the Earth. Here the Moon stands over North Africa and
the image is located north of New Zeland in the Pacific Ocean. The same force field will appear if the
Moon was located above the image point. As the Earth rotates the field will move westward.

With the Moon moving in the equatorial plane there will, for each location on the
Earth, be high water when the Moon passes the meridian and another equally high
water about 12.4 hours later when the Moon is on the opposite side of the Earth.
Hence, the expression (8) explains nicely the semi-diurnal variation of sea level. When
the Moon has a northern or southern declination there will be an asymmetry between
two consecutive high waters. Therefore equation (8) also explains the diurnal equality
i.e. the difference in sea level rise between two consecutive high water. The surface
displacement given by eq. (8) is called the equilibrium tide and in absence of continent
it is thought to follow the Moon when the Earth rotates. It corresponds to the idealized
situation where the water masses adjust instantaneous to the motion of the Moon and
the rotation of the Earth.

Table 1 Astronomical constants.

Mass of the Earth: me 5.974·1024 kg
Mass of the Sun: ms 1.991·1030 kg
Mass of the Moon: ml 7.347·1022 kg
Mean distance Earth-Moon R 3.844·10 5 km
Mean distance Earth-Sun R 1.496·10 8 km
Radius of the Earth r 6.370·10 3 km

The equilibrium tide is often used as a potential for the tide generating force. The
strength of the horizontal component of the tidal acceleration (7) and the equilibrium
tide (8) will vary with the position of the Moon and its distance from the Earth.
Maximum tidal acceleration will occur when the Moon is closest to the Earth (perigee)
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and minimum acceleration when the Moon is in apogean position. The variation the
acceleration from minimum to maximum is about 20% of the mean value.

B
HW

O A
HW

to the Moon

LW

LW

Figure 5: The equilibrium tide. HW : high water, LW : low water.

Here we have only established, to lowest order of accuracy, the expression for the
equilibrium tide due to the action of the Moon. A similar expression will clearly also
appear from the action of the Sun

η̃s =
1

4

ms

me

r sin3 πs(3 cos 2θs + 1)

where ms and πs denote the mass and the horizontal parallax of the Sun respectively,
and θs is zenit distance of the Sun. Although the mass of the Sun is much larger than
the mass of the Moon the parallax for the Sun is much less than the parallax of the
Moon. The equilibrium tide due to the Sun is therefore about half of the Moon’s.
The combined effect of the Moon and the Sun leads to an expression for the total
equilibrium tide

η̃ = η̃m + η̃s (9)

With the astronomical constants in table 1 we find the maximum values of the equi-
librium tide η̃m =0.35 m and |η̃s| =0.15 m. Hence the maximum amplitude of the
combined equilibrium tide from the Moon and the Sun will be 0.50 m. This is consid-
erably less then the ocean tide in most places and we will later, in section 4, see how
the equilibrium tide is amplified in the ocean. Since the position of the Moon and the
Sun can be calculated with a high degree of accuracy the parallax and zenit distances
is known as highly accurate functions of time. Hence we can calculate the spatial and
temporal variation of the equilibrium tide or equivalently the tide generating force.
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Figure 6: Schematic illustration of the effect of the Moon’s declination on the equilibrium tide..
With the Moon in the equator plane (declination δ = 0) the tides at A and B have the same height
(upper figure). With the Moon above the equator plane (declination δ > 0) the tides at A is lower
than the tide at B (lower figure).
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3 Harmonic decomposition of the tide generating

force

The tide generating force, or equivalently the equilibrium tide, can be decomposed into
a series of harmonic components or partial tides. Each component or constituent has a
amplitude determined from the equilibrium tide and a period corresponding to periods
for the orbital motion of the Moon, Earth and the Sun. The major constituents have
either period around 12 hours or 24 hours and are therefore classified as semi-diurnal
or diurnal species respectively. It has been shown that at a point with geographical
coordinates θ, ϕ, the equilibrium tide can be written as sum of cosines function.

η̃ =
∑

i

η̃i(θ) cos(ωit + χi + νiϕ) (10)

where η̃ is the amplitude, ωi is the frequency, χi is an astronomical argument and νi

an index equal 1 for diurnal components and 2 for semi-diurnal. The geographical
coordinates are here colatitude θ and longitude ϕ

The astronomical argument can be expressed in terms of mean longitude of the
Sun, Moon and lunar perigee usually relative to Greenwich midnight . Formulas for
calculating the astronomical arguments are given for example by Schwiderski (1980,
1986).

The average time lapse from one transit of the Moon over the Greenwich meridan
to the next is 2 · 12.42 = 24.82 hours. The astronomical argument of M2, i.e. χM2

measured in degrees, will give the time of transit of the Moon: tG = (24.82×χM2
)/360.

If the astronomical argument is zero it means that the Moon transits the meridian at
midnight (in GMT time) on that particular day.

Six of the major astronomical tidal components are listed in table 1 with their
symbol, period, and frequency. Here the component M2 represents the tidal force of
an imaginary Moon circulating around the Earth in the equator plane with the mean
speed of the real Moon. Similarly the component S2 corresponds to a Sun circulating
in the equator plane. The effect of the declination changes are accounted for by the
diurnal component K1 and the ellipticity of the Moon’s orbit by the component N2.
Similar, albeit a less intuitive, interpretation can be given to the other astronomical
components.

Table 2 List of major tidal harmonic components.

Symbol Period (T ) Frequency (ω) Description
hours 10−4 rad/s

M2 12.42 1.40519 principal lunar, semidiurnal
S2 12.00 1.45444 principal solar, semidiurnal
N2 12.66 1.37880 elliptical lunar, semidiurnal
K2 11.97 1.45842 declinational luni-solar, semidiurnal
K1 23.93 0.72921 declinational luni-solar, diurnal
O1 25.82 0.67598 principal lunar, diurnal
Sa year meteorological, annual
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4 Ocean response

The ocean response is basically a linear process which means that the sea level changes
at a given location can be expressed as a corresponding sum of harmonic components
with the same prevailing frequencies as appeared in the decomposition of the equilib-
rium tide eq. (10). This is a common property of all linear harmonic oscillators, a
well-known process also from other branches of physics. Hence sea level at a location
with colatitude θ and east longitude ϕ can be written

η(θ, ϕ, t) =
∑

i

Hi(θ, ϕ) cos[ωit + χi − δi(θ, ϕ)] (11)

The amplitude Hi(θ, ϕ) and Greenwich phase δi(θ, ϕ) are usually referred to as the har-
monic constants for the component i and t is Greenwich (GMT) time or Universel time
(UT). The amplitude and the phase for each component depend in a very complicated
way on the dynamical properties of the ocean basin i.e. depth, shape, size, dissipation
as well as the amplitude and phase of the corresponding partial equilibrium tide. If
for example one of the forcing frequency in the sum (10) happens to coincide with an
eigen frequency of the basin oscillations large amplitude tides may occur.

Amplification of the tide may also occur when the ocean tide propagates over the
shelf into shallow water, and when irregularities in the coastal topography act as ob-
stacles to the tide. As we already have seen it follows from eq. 9 that the amplitude
of the equilibrium tide is of order 0.5 m. Since in many places the sea level changes
of the tides are several meters it is clear that significant amplification occurs in many
ocean basins. We shall discuss the variation of tidal amplitudes and phases on basin
scale in section 10.

5 Harmonic constants and tidal predictions

The harmonic constants for each tidal constituent at a certain location can be de-
termined by harmonic analysis of observed time series of surface elevation from that
particular location (see section 6) or by numerical tidal models for the surrounding
basin (see section 9). As an example we shall consider the tides at Longyearbyen.

Table 3 Harmonic constants for sea level at Longyearbyen.

Component Hi(cm) δi(deg)

M2 52.2 356.0
S2 19.9 40.0
N2 10.0 329.6
K2 5.7 38.0
K1 10.2 221.0
O1 3.1 77.0

From long series of records of sea level the harmonic constants at Longyearbyen are
determined by Polarinstituttet, Tromsø, Norway and published annually in the official
tables of tides from Norges Sjøkartverk (2013).
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An interpretation to the phase angle δM2
for M2 can be given as follows: Consider

for simplicity a day when the Moon transit the Greenwich meridan at midnight (GMT
time) i.e. χM2

= 0. Then the first high water after the lunar transit will occur
when the argument of the cosine function (ωM2

t − δM2
) = 0. Hence the time delay

is td = δM2
/ωM2

. Since the phase angle usually is measured in degrees it is more
conveniant to write

td = TM2

δM2

360

where TM2
= 12.42 hours is the period of the M2 component. This leads to td = 12.28

hours delay of high water. Now it is also high water 12.42 hours before. This means
that it is also high water about 8 minutes before the transit of the Moon in Greenwich.

With this set of constants in table 3 it is easy to demonstrate the characteristics of
tidal oscillations at Longyearbyen (figure 8). The calculations are done for September
2013 on basis of eq. 11. The astronomical arguments, χi, for the various components
are determined by a separate program which calculates the position of the Moon and
the Sun (Schwiderski, 1986). Figure 8 shows clearly the significance of the various
components. With M2 only (a), the sea level varies regularly as a harmonic oscillation
with amplitude 52.2 cm and period 12.42 hours. With S2 added (b), the beat cycle
of the spring and the neap tides appears. Here the highest spring tides occur around
the 8th and 21th of September about 2 days after new and full Moon respectively,
with neap tides around the 14th and 29th of September. The delay of the spring tide
relative to the time for new and full Moon, here about 2 days, is called the age of the
tide which is infuenced in a complicated way by the dissipation of tidal energy in the
basin. An estimate of the age of the tide (in hours) can be calculated from the formula

0.984 · (δS2
− δM2

)

where δS2
and δM2

are the phase angles measured in degrees for the S2 and M2 com-
ponents respectively. With values from table 3, δS2

= 360+40 and δM2
= 356, the

average age of the tide in Longyearbyen is found to be 43.3 hours. The amplitude of
the neap tide is 32.3 cm, i.e. the difference between the amplitude of the M2 and the
S2 constituents, while the amplitude of the spring tide is 72.1 cm i.e. the sum of the
amplitudes of M2 and S2.

With N2 added to S2 and M2 (c), an asymmetry between the first and the second
neap tides appears. The neap tide around 14th of September is considerably larger than
the neap tide around 29th of September. This is due to the variation of the distance
between the Moon and the Earth. In September 2013 the minimum distance of 367 387
km (perigee) occurs on the 15th and maximum distance 404 308 km (apogee) on the
27th. The variation in the distance to the Moon introduces a difference in height of the
two neap tides. Finally (d) where the diurnal component K1 is added clearly shows the
diurnal inequality with a noticeable difference in amplitude for two consecutive high
or low waters. How the variation of the declination of the Moon produces a diurnal
inequality is shown schematically in fig. 6.

The tides at Longyearbyen is dominated by the semi-diurnal constituents M2 and S2

which lead to the characteristic neap-spring cycles. A similar tidal structure is common
all over the Norwegian and the Barents Seas. In some other oceans, for example on
the Pacific coast of USA, the diurnal component is large, leading to a more complex
tidal structure (mixed tide).
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With the same technique as described above the sea level changes at Longyearbyen
are calculated for a period in January 1993 and compared with available observations
(figure 9). We see that the predictions are in very good agreement with the obser-
vations, but there is some systematic differences for example from the 3th to the 5th
day.

During this period the observations are generally lower then the predictions an effect
most likely due to the influence of atmospheric forces i.e. wind stress and pressure.
Tidal predictions for harbours along the coast of Norway and Svalbard are available
in ref. [24]. The website from the Norwegian Hydrographic Service, Statens Kartverk:
http://vannstand.no/ also provides sea level observations.

Figure 7: The tidal wave propagates from the open ocean into Isfjorden and Adventfjorden (pic-
ture). Short records of sea level oscillations are avaiable from temporarily operating tidal stations
at Hotellnesset and Longyearbyen harbour. A permanent tidal station is operated at Ny-Alesund by
Statens Kartverk which measures the sea level variations relative to the ground. At this station the
vertical and horizontal motion of the ground are also monitored with accurate GPS an VLBI tech-
niques in order to determine land upheavel and absolute sea level changes (Sato et al. 2006). Data
from the station in Ny-Alesund is avilable on http://www.vandstand.no. Picture from franziundmag-
gieinspitzbergen.blogspot.com
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Figure 8: Tides at Longyearbyen 1-30 September 2013. a) Only M2, b) M2+S2, c) M2+S2+N2, d)
M2+S2+N2+K1. New Moon 5 Sept. and full Moon 19 Sept. Lunar perigee 15 Sept. and apogee 27
Sept. Day starts at midnight UT (GMT).
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Figure 9: Tides at Longyearbyen 1-8 January 1993. Full drawn line; predicted tide with the six
components listed in table 2. Circles; observations with 1 hour sampling interval. Observational data
from Mr. T. Eiken, Polarinstituttet, Oslo.

6 Harmonic analysis of tidal records

In order to provide an understanding of the basic principles of harmonic analysis we
shall here give a simplified description of the method. The method as it is formulated
here is closely related to the method of least square error, frequently used in statistics
and analysis of measurement errors in experimental physics. Assume that at a station
the height of sea level, h, relative a fixed point has been recorded at regular time
intervals ∆t over a time span 0 < t < tm

h = {hk}, k = 1, 2, 3, . . . kmax

where tm = (kmax −1)∆t. For tidal records the sampling interval, ∆t, normally is from
10 minutes to 1 hour. The mean height of sea level is

h =
1

kmax

kmax∑

1

hk (12)

and the displacement of the sea level relative to the mean value

η = {ηk} = {hk − h}, k = 1, 2, 3 . . . kmax

We may for simplicity assume that the sampling is sufficient dense so that we may
regard η as a continuous function of time

η = η(t) (13)
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We shall now, again for simplicity, assume that the variation of η with time is dominated
by one distinct tidal frequency with period Ti and that the length of the record is long
enough to contain several oscillations, i.e. tm > Ti. Let try to approximate the function
η(t) by a harmonic component

ηs(t) = Hi cos(ωit − κi)

where κi contain both the astronomical argument and the phase of the component as
defined in eq. 11. This expression can be rewritten in the form

ηs(t) = Ai cos ωit + Bi sin ωit

where Ai = Hi cos κi and Bi = Hi sin κi. The integrated square difference between η(t)
and ηs(t) is

I =

tm∫

0

[η(t) − ηs(t)]
2dt

Now the difference, I, is a function of Ai and Bi and we may determine these coefficients
so that I attains a minimum value. The conditions for this is obviously.

∂I

∂Ai

= 0 ;
∂I

∂Bi

= 0

which leads to

tm∫

0

[η(t) − ηs(t)] cos ωit = 0

tm∫

0

[η(t) − ηs(t)] sin ωit = 0

By substituting for ηs(t) in the integrals we find after rearrangements

tm∫

0

η(t) cosωit dt − Ai

tm∫

0

cos2 ωit dt − Bi

tm∫

0

cos ωit sin ωit dt = 0

and
tm∫

0

η(t) sin ωit dt − Ai

tm∫

0

cos ωit sin ωit dt − Bi

tm∫

0

sin2 ωt dt = 0

By choosing the length of the record as a multiple of the period tm = mTi the integrals
over products of sines and cosines vanish and

tm∫

0

cos2 ωit dt =

tm∫

0

sin2 ωit dt =
tm
2
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Hence

Ai =
2

tm

tm∫

0

η(t) cos ωit dt

Bi =
2

tm

tm∫

0

η(t) sin ωit dt .

With the sampled data set {ηk} and M = tm/∆t where M + 1 < kmax, the integrals
reduce to sums

Ai =
2

M

k=M+1∑

k=1

ηk cos

(
2π(k − 1)∆t

Ti

)

Bi =
2

M

k=M+1∑

k=1

ηk sin

(
2π(k − 1)∆t

Ti

)

Hence we can determine the amplitude Hi and phase κi of the harmonic component.

Hi =
√

Ai
2 + Bi

2, tanκi =
Ai

Bi

The theory given here can easily be extended to incorporate more components. In case
of two dominant components with nearly the same period, as for example M2 and S2

the record must be long enough to contain at least one spring neap cycle.
The same method as outlined above applies also when the recorded signal is a

current component and the same formulas can be used provided ηk is replaced by uk,
the sampled time series for the current component.

In order to demonstrate the usefulness of the simplified approach we have estimated
the amplitudes of M2 and S2 for Longyearbyen from a record of sea level from January
1993 with sampling ∆t= 1 hour. For M2 where T =12.42 hours we use m =50 and M
=621 which leads to H =53.1 cm and for S2 where T =12.00 hours we use m = 60
and M=720 which leads to H =19.4 cm. Both amplitudes are in good agreement with
the corresponding values in table 2 which are calculated by more accurate methods
(Foreman 1977, Pawlowicz et al. 2002).

7 Laplace’s tidal equation

The wave length, λ, of the tidal wave is typical of the order 1000 km i.e. much larger
than the water depth. Hence a long wave approximation applies with a hydrostatic
pressure distribution in the vertical water column:

p = po + ρg(η − z) (14)

Here po is the atmospheric pressure, ρ is the mean density of sea water, η is the vertical
displacement of the sea surface and z-axis pointing upward with z = 0 at the mean sea
level. Hence the horizontal pressure gradient becomes

▽p = ρg ▽ η
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which shows that the horizontal current associated with the wave motion is essentially
depth independent. We denote the horizontal current vector by

~v = {vθ, vϕ}

with components directed along the local colatitude (south) and the local longitude
(east) respectively. Since the period of the wave motion is of the order of the period
of the earth rotation the horizontal components of the Coriolis force, which can be
written

−f~k × ~v

will be important. Here f = 2Ω cos θ is the Coriolis parameter with Ω the angular
velocity of the Earth and θ the colatitude. ~k is a unit vector pointing upward in
vertical direction. Except in some coastal areas the tidal currents are small and the
amplitude of the tidal wave, i.e. the height of high water, is much less than the water
depth. Hence the equation of motion for the horizontal tidal flow can be linearized and
written

∂~v

∂t
+ f~k × ~v = −g ▽ (η + η̃) − cD

h
|~v|~v (15)

Here the gradient of the equilibrium tide represent the tide generating force. We have
also introduce quadratic bottom friction proportional to v2 and direction opposite to
the current vector. The bottom friction coefficient is denoted cD which typically is
of order cD = 0.003. The dependence of the bottom friction term on water depth
ensure that bottom friction is more important in shallow water than in deep water.
The equation of continuity can be written

∂η

∂t
= −▽ ·(~vh) (16)

which simply expresses that net volume flux into a water column lead to a corresponding
displacement of sea level. The horizontal gradient operator in eq (15) and the horizontal
divergence operator in eq. (16) are expressed in spherical coordinates θ, ϕ.

▽η = { ∂η

r∂θ
,

1

r sin θ

∂η

∂ϕ
} (17)

▽ · (~vh) =
1

r sin θ

[
∂vϕh

∂ϕ
+

∂

∂θ
(vθh sin θ)

]
(18)

The set of equations (15-16) constitutes Laplace’s tidal equations (LTE) and are es-
sentially the shallow water equations for long wave motion in a thin fluid layer on a
spherical globe. The boundary conditions for LTE are vanishing current perpendicular
to the coast

~v · ~n = o on Γc

where ~n is unit vector normal to the coastline, Γc.

8 Free wave solution to LTE. Kelvin waves.

Assume that the area of interest is so small that the curvature of the Earth can be
neglected. We shall consider an ocean basin with uniform depth h bounded by a
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Figure 10: Simple coast geometry for modelling of a Kelvin wave.

straight coast and introduce a Cartesian coordinate system x, y, z as sketched in fig.
10 with the x-axis along the coast and the y-axis in offshore direction.

The components of the horizontal current vector ~v = {u, v} and the sea surface
displacement η are functions of x, y and time t. Neglecting the bottom friction term
and the driving force i.e. the equlibrium tide η̃ we obtain from eq. (15)

∂~v

∂t
+ f~k × ~v = −g ▽ η

When written out in component form this equation becomes:

∂u

∂t
− fv = −g

∂η

∂x
(19)

∂v

∂t
+ fu = −g

∂η

∂y
(20)

Similarly the equation of continuity (16) can be written

∂η

∂t
= −h(

∂u

∂x
+

∂v

∂y
) (21)

We will seek a free wave solution propagating in x-direction along the coast

η = η̂(y) sin k(x − ct)

u = û(y) sin k(x − ct)

v = 0

where c is the wave speed and k is the wave number. By substitution in eqs. (19-21)
we find.

û =
g

c
η̂

dη̂

dy
= −f

g
û

û =
c

h
η̂
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Combination of the first and the third of these equations leads to

c =
√

gh

and from the second and the third

dη̂

dy
= −f

c
η̂

which can be integrated

η̂ = η0 exp(−f

c
y)

where η0 is the amplitude at the coast y = 0. This shows that the wave propagate
with the speed of long waves in shallow water and the amplitude decays exponentially
away from the coast. The full solution can now readily be formulated

η(x, y, t) = η0 exp(−f

c
y) sin k(x − ct)

u(x, y, t) =
cη0

h
exp(−f

c
y) sin k(x − ct)
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Figure 11: Contour lines for sea level displacement for a Kelvin wave. Normalized to unity at the
coast y = 0.
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Table 4 Parameters for a tidal Kelvin wave.

Amplitude η0 1 m
Depth h 250 m
Wave speed c =

√
gh 50 m/s

Current u0 = η0g

c
0.2 m/s

Period T 12 hours
Wave length λ = cT 2160 km
Coriolis parameter f 1.4·10−4 s−1

Rossby radius R 357 km

This is known as the Kelvin wave solution. The length scale for the damping of the
amplitude away from the coast, R = c

f
, is called the Rossby radius. The numerical

example in Table 4 serves to illustrate the properties of a Kelvin wave with 12 hour
period. Contour plots of the sea level displacement associated with the Kelvin wave is
displayed in fig. 11.

Tidal waves resembles the Kelvin wave in this examples, but in real ocean basins
the structure of the waves is modified by bottom topography and bottom friction.

9 Numerical models

Under special conditions with idealized bathymetry and coastline configurations it can
easily be shown that the LTE, possess analytical solutions corresponding to Kelvin
waves, Sverdrup waves and topographic Rossby waves (shelf waves). An example to
this was given in the previous section. Solutions for realistic bathymetry on global and
basin scales are, however, only possible to obtained with numerical methods. Over the
last 30 years there have been a large and sustained effort to map the tides in the worlds
ocean and in coastal waters by numerical methods (Davies et al. 1996)

In this approach the ocean is divided in grid boxes, most often with a rectangular
grid lattice where the values of surface elevation (η) and current (~v) are specified at the
nodes of the lattice. In this description the coastline will appear as piecewise straight
lines.

For each grid box the momentum equation (eq. 15) and the continuity equation
(eq. 16) are formulated as difference equations where the values of η and (~v) at the
nodes of the lattice are the unknown. With specified boundary condition this set of
equations is solved by a computer. Examples of numerical simulations of the tides in
the Barents Sea are presented in the next section.

10 Tidal charts for the Barents Sea

In order to describe the structure of the tides in a real ocean we shall, as an exam-
ple, consider the dynamics of the tides in the Barents Sea and in the regions around
Svalbard. The tides in this areas have been simulated by different numerical models
which cover the Norwegian, Greenland, Barents Seas and the Arctic Ocean (Gjevik and
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Straume 1989, Gjevik et al. 1990, 1994, Kowalik and Proshutinsky 1995 and Lyard
1997). The numerical simulations are based on numerical solutions of Laplace tidal
equations with prescribed input along the boundary towards the North Atlantic and
the tide generating force on the water masses within the model domain included. It
has been shown (Gjevik and Straume 1989) that the inflow by tidal waves from the
North Atlantic is the most important factor for the semi-diurnal tides in the Norwegian
and the Barents Seas and that the direct effect of the tide generating force within the
basin is of less importance. After harmonic analysis of the simulated time series of
sea level the results are displayed by contour maps for amplitude, Hi, and phase δi

for the various harmonic components (figs. 12-15). These type of contour maps are
commonly referred to as tidal charts. The M2 chart (fig. 12) display a characteristic
circular center with nearly vanishing sea level amplitude south-east of Svalbard. The
contour lines for constant phase appear as spokes from the center with increasing phase
values when one proceeds in an anticlockwise direction around the center. This type of
contour pattern is common in tidal charts and is referred to as an amphidromic point.
Two other amphidromic points of lesser extent are visible in figure 12. One in the
Kara Sea east of Novaja Zemlja and the other one west of Franz Josef Land. The main
amphidrome south-east of Svalbard controls the dynamics of the tide in the central
parts of the Barents Sea. It shows that a tidal wave is progressing into the Barents
Sea with high amplitudes along the coast of Finnmark and with increasing amplitude
eastwards along the coasts of Kola. At the same time as the tidal wave crest passes the
coast of Finnmark the corresponding crest of the tidal wave is progressing in the deep
Norwegian Sea and through the Fram Strait and into the Arctic Ocean north of Sval-
bard (phase line 030). This wave is propagating around Svalbard and enter the Barents
Sea in the straight between Nordaustlandet and Franz Josef Land. This wave leads
to a westward propagating wave south of Edge øya and over Svalbardbanken between
Svalbard and Bear Island which is evident by the structure of the amphidromic point.
The S2 and N2 tidal charts (figures 13 and 14) show a similar structure of contour lines
as for M2 implying that these semi-diurnal tidal waves have nearly the same dynamic
features as M2. The tidal chart for the diurnal component K1 shows a very different
structure particularly with the large amphidromic point in the Fram Strait between
Svalbard and Greenland. Also the amphidromic structures south of Svalbard are more
complex then for the semi-diurnal components with several local amplitude maxima
near the shelf edge. This is a manifestation of that the diurnal tide is resonant with
shelf wave modes, with nearly the same period as K1, along the pronounced shelf edge
between northern Norway and Spitsbergen. The predictions of the model have been
validated by comparing with sea level and current measurements. On an average the
standard deviation between model and observations is less then 10 % (Gjevik et al.
1994)

An animation of the propagating M2 tide in the Norwegian and Barents Seas can
be found on the internet site: http://www.farleia-forlag.no
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Figure 12: M2 tidal chart. Contour lines for amplitude, H , full drawn lines, phase δ, dotted lines.
Units for amplitude meter, for phase degree (Greenwich). From Gjevik, Nøst and Straume, 1994
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Figure 13: S2 Tidal chart. Contour lines for amplitude, H , full drawn lines, phase δ, dotted lines.
Units for amplitude meter, for phase degree (Greenwich). From Gjevik, Nøst and Straume, 1994
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Figure 14: N2 Tidal chart. Contour lines for amplitude, H , full drawn lines, phase δ, dotted lines.
Units for amplitude meter, for phase degree (Greenwich). From Gjevik, Nøst and Straume, 1994
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Figure 15: K1 Tidal chart. Contour lines for amplitude, H , full drawn lines, phase δ, dotted lines.
Units for amplitude meter, for phase degree (Greenwich). From Gjevik, Nøst and Straume, 1994
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11 Tidal currents

Associated with the sea level changes due to tides there are complex current fields. In
open deep oceans the tidal current is normally small and of order 1 cm/s. Over shallow
banks and in coastal waters where the flow is constrained by topography current speed
can be of the order of 1 m/s. In narrow straits and sounds where large water masses pass
through during the tidal cycle current speed up to 3-5 m/s may occur. The Maelstrom
(Moskstraumen) in Lofoten, northern Norway, is one famous example (Gjevik, Moe and
Ommundsen 1997). Strong tidal currents also occur east of Spitsbergen in the Freeman
Sound between the Barents Island and Edge Island, in Heleysundet between the Barents
Island and Nordaustlandet, and also in the Hinlopen Strait between Spitsbergen and
Nordaustlandet (Gjevik 2009).

N

~v

α
E

y
x

Figure 16: The tidal ellipse

The tidal currents in open sea are generally rotary i.e. the current vector rotates
either in a clockwise or a anti-clockwise fashion during the tidal cycle. At the same
time the head of the current vector describes an ellipse. With the current vector and
its components denoted ~v = (u, v) the tidal ellipse can be written

(
u

A
)2 + (

v

B
)2 = 1

where A and B are the major and minor half axis (A, B) which represent the maximum
and minimum current speed respectively. The principal coordinate directions x and y
are oriented along the direction of the major and minor half axis of the ellipse which
may in general be rotated an angle α relative to local east or north (fig. 16). The
current ellipse associated with the M2 component in the area south of Svalbard is
shown in fig 17. Tidal currents are particularly strong over the shallow banks around
and northeast of Bear Island. The current ellipses are here nearly circular with a
clockwise rotation of the current vector. Maximum current speed is up to 1.0 m/s
which is an exceptional large current in open ocean.

Due to the effect of friction and turbulence the tidal current may vary considerably
in the vertical. Density stratification may also modify the current profile and lead to
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Figure 17: The M2 tidal ellipses south of Svalbard. From Gjevik et al. 1990

internal wave modes (internal tides). This is particularly important in fjords (Tverberg
et al. 1991).

Near the critical latitude were the period of the tide coincide with the inertial
period,it can be shown that turbulence and stratification will have a dominant effect
on the profile of the tidal current. The critical latitude for the M2 component is 75o

2.8’ which passes through the Barents Sea north of Bear Island. Nøst (1994) found
that current data from this area show the expected influence on the tidal current profile
matching model predictions. Similar results from the area near the southern critical
latitude in the Wedell Sea was reported by Foldvik et al. (1990).

12 Drift and dispersion of particles in the tidal flow

In areas with strong tidal currents it represents a major factor for drift and dispersion
of particles suspended in the water column. Since particles which are displaced during
the first part of the tidal cycle may move into area with different current regime the
particles will not necessary return along the same path during the second part of the
tidal cycle.Hence a net displacement or drift may occur. The tide will for example
lead to a tidal induced clockwise circulation around Bear Island where particles will
circumvent the island in 6-8 days. This has been documented both from observations
(Vinje et al. 1989) and by model and laboratory studies (Straume et al. 1994, Gjevik
et al. 1994, Kowalik and Proshutinsky 1995, and Gjevik 1996).
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Figure 18: Streamlines showing strong tidal current in Ormholet near Heleysundet between Bar-
entsøya and Nordaustlandet. (Photo by courtesy of Prof. Johan Ludvig Sollid).
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Figure 19: Regular tidal current oscillations under sea ice near Cape Lee in the western part of the
Freeman Sound. ADCP records from 10 AM on 19 April to 16 PM on 20 April 2004 (local time). The
measurements cover from 9 to 26 meter depth. Upper graph current direction in degree true. Lower
graph current speed in cm/s. See color scale on right side. (Smedsrud and Skogseth 2004).
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Figure 20: Observed 30 days drift of Argos buoy around Bear Island (a) (After Vinje et al., 1989).
Particle trajectories in tidal current from model simulations ( 7 days) (b). (Straume et al. 1994,
Gjevik 1996)

13 Mean sea level (MSL)

Mean sea level serves as a reference height or datum for tidal sea level displacements
and also for land surveying. Tidal amplitudes usually refer to MSL and the heights of
mountains and hills on maps are given relative to MSL.

Mean sea level can be determined from long records of sea level observations by
eq. 12. For averaging out the effect of tidal oscillations in the records MSL is calcu-
lated for a period of 19 years which covers the longest period of oscillation of the tide
generating force from the Moon (18.6 years). MSL for this long averaging period is
regularly updated and used for references. Monthly and annual mean values of MSL
are also calculated and published by the national Hydrographic Services all over the
world.

Observed variation in annual mean sea level can provide information on land up-
heavel or subsidence and climate changes. For example; data from Oslo, Norway
(fig. 21) show a gradual lowering of mean sea level of about 30 cm over a period of
85 years, corresponding to land rise of about 0.39 cm/year. This is due to the still
ongoing rebound of the Earth crust after it was subpressed by the ice load during the
Pleictocene ice age.

Data from stations along the western and northern coast of Norway (fig. 22) show
coherent decadal variations in mean sea level. In the years 1982-83 and 1988-91 sea
level was higher then usual and this correlates to positive values of the NAO index
(fig. 23). It is not unexpected that the oscillations in The North Atlantic weather
system, as expressed by the NAO index, manifest itself by variation in mean sea level
along the Norwegian coast. The explanation is of course that the strengthening of the
westerly wind stress over The North Atlantic and The Norwegian Sea, in period with
large positive NAO index, leads to a transport of water towards the Norwegian coast
and thereby an increase in sea level. Analysis of MSL data have become an important
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Figure 21: Annual mean sea level (in centimeter) at Oslo for the years 1914-2006 (blue rings).

Broken red line is best regression fit corresponding to a lowering of mean sea level of 0.38 cm/year.

From Gjevik (2009).

Figure 22: Variation in annual mean sea level (in centimeters) at four stations along the Norwegian
coast in the years 1970-1999, Oslo (red), Bergen (blue), Bodø (green) and Hammerfest (brown). From
Gjevik (2009).

Figure 23: Difference in atmospheric pressure at sea level between Ponta Delgada at The Azores and
Stykkisholmur near Reykjavik on Iceland. Here expressed by the NAO-index (annual mean) for the
years 1970-1999. Positiv value of the NAO index corresponds to highest air pressure at The Azores.
(From Jim Hurrell, NCAR)
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tool for climate studies and climate modelling.
An international data archive, named the Permanent Service for Mean Sea Level

(PSMSL), has therefore been established at Proudman Oceanographic Laboratory,
England and MSL data from a world wide network of stations can be down loaded
from its data base (www.pol.ac.uk/psmsl).

14 Exercises

1. Calculate the phase angle difference corresponding to a time delay of one hour
for each of the tidal components listed in table 2.

2. Find the time delay between the Moon’s transit over the Greenwich meridian and
the next high water in Longyearbyen. Consider mean high water as given by the
M2 component. What will be the time delay relative to the Moon’s transit over
the local meridian through Longyearbyen?

3. At a location with predominate semi-diurnal tide the amplitude at spring is 75
cm and at neap 35 cm. What are approximately the amplitude of the M2 and S2

components?

4. Assume that the tide is adequately described by only two tidal components M2

and S2. What is the exact time between neap and spring tide in this case ?

5. The minimum and maximum distance between the centers of the Moon and the
Earth is about 356.500 km and 406.700 km respectively. Calculate the peak tidal
acceleration in perigee and apogee position in percentage of the mean value.

6. What is approximately the time period between events with the perigee at the
time of full Moon?

7. Use the tidal tables (ref. [24]) or tidal predictions available on the internet site
vannstand.no to find time for high and low water (LW and HW) on 27 September
2013 at Kirkenes and Longyearbyen. Show that the time difference for HW and
LW between these two stations correspond approximately to the phase angle
difference for the M2 component.

8. Assume that sea level is responding to changes in atmospheric pressure in a
quasi steady barometric fashion such that the weight of the access water column
corresponds directly to the change in atmospheric pressure. How large changes in
the atmospheric pressure (in hPa) are required to explain the difference between
predicted and observed sea level in fig. 9 ?

9. On basis of the tidal charts for the Barents Sea try to explain that large tidal
currents are to be expected in the Freeman Sound between the Barents Island
and Edge Island east of Spitsbergen.

10. Use the phase information for M2 in the chart fig. 12 to estimate the average
speed of the tidal wave along the coast of Finnmark and Kola. With the formula√

gh for the speed of long water waves find the corresponding depth. Check the
depth on maps of the area to see if this is a reasonable estimate.
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11. The tidal current is given by its velocity components u = uo sin ωt, v = vo cos ωt in
a Cartesian coordinate system x, y. uo, vo are constants ω is the angular velocity
and t is time. Consider a particle which at t = 0 is located at the origin and
subsequently drifts passively with the current. Find the path or the trajectory for
the particle. What is the maximum displacement (tidal excursion) of the particle
in the x and y direction respectively?

12. Suppose that we add a mean current u along the x-axis to the tidal oscillations
in problem 11. Determine the path of a particle released at the origin at t = 0
and sketch the trajectory when u = uo

2
and u = 2uo.

References

[1] Cartwright, E. D., (1977) Oceanic tides. Rep. Prog. Phys. 40, 665-708.

[2] Davies, M. A., J. E. Jones and J. Xing, (1996) A review of recent development in
tidal hydrodynamic modelling, parts I and II. J. Hydraulic Eng. ASCE , 123, No 4,
278-302.

[3] Foldvik, A., J. H. Middleton and T. D. Foster (1990) Tides in the southern Wedell
Sea. Deep Sea Res., 37, 1345-1362.

[4] Foreman, M. G. G., (1977) Manual for tidal heights analysis and predictions. Pac.
Mar. Sci. Rep., 77-10, 101 pp. Inst. Ocean Sci. Sidney, B.C. Canada.

[5] Gjevik, B., and T. Straume, (1989), Model simulation of the M2 and the K1 tide
in the Nordic Seas and the Arctic ocean. Tellus 41A, pp. 73–96.

[6] Gjevik, B., (1990) Model simulations of tides and shelf waves along the shelves
of the Norwegian-Greenland-Barents Seas. In: Modelling Marine Systems Ed. A.M.
Davies, CRC Press Inc. Vol. I, pp. 187-219.

[7] Gjevik, B., E. Nøst, and T. Straume, (1990), Atlas of tides on the shelves of the
Norwegian and the Barents Seas. Dept. of Math., Univ. of Oslo, report FoU-ST
90012 to Statoil, Stavanger.

[8] Gjevik, B., E. Nøst and T. Straume, (1994), Model simulations of the tides in the
Barents Sea. J. Geophysical Res., Vol 99, No C2, 3337–3350.

[9] Gjevik, B., (1996) Models of drift and dispersion in tidal flows. In Waves and Non-
linear Processes in Hydrodynamics. Eds. J. Grue, B. Gjevik and J. E. Weber. Kluwer
Academic Publisher, pp. 343-354.

[10] Gjevik, B., H. Moe og A. Ommundsen, (1997), Sources of the Maelstrom. Nature,
Vol 388, 28 August 1997, 837-838.

[11] Gjevik, B., (2009) Flo og fjære langs kysten av Norge og Svalbard. Farleia Forlag.
ISBN 978-82-998031-0-6.

[12] Kowalik, Z. and A. Yu. Proshutinsky, (1995), Topographic enhancement of tidal
motion in the western Barents Sea. J. Geophys. Res., Vol. 100, no. C2, 2613-2637.

34



[13] Laplace P. S. (1775) Recherches sur Quelques Points de Systeme du Monde. Mem.
Acad. Roy. Sci. 88.

[14] Lyard, F. H., (1997) The tides in the Arctic Ocean from a finite element model.
J. Geophys. Res., Vol. 102, no. C7, 15611-15638.

[15] Newton I. (1687) Philosophiae Naturalis Principia Mathematica, London.

[16] Nøst, E., (1994) Calculating tidal current profiles from vertically integrated models
near the critical latitude in the Barents Sea J. Geophys. Res., Vol. 99, no. C4,
7885-7901.

[17] Pawlowicz, P., Beardsley, B., and Lentz, S. (2002) Classical tidal analysis including
error estimated in Matlab using T-tide. Computers and Geoscience 28, 929-937.

[18] Schwiderski, E. W., (1980) On charting global ocean tides. Rev. Geophys. and
Space Physics 18, 243-268.

[19] Schwiderski, E. W., (1986) Tides. In The Nordic Seas (ed. B. G. Hurdle): New
York Springer-Verlag, 191-209.

[20] Lars H. Smedsrud and Ragnheid Skogseth (2006) Field measurements of Arctic
grease ice properties and processes. Cold Regions Science and Technology, Vol. 44,
171-183.

[21] Sato, T. et al. (2006) A geophysical interpretation of the secular displacement and
gravity rates observed at Ny-Alesund, Svalbard in the Arctic– effects of post-glacial
rebound and present-day ice melting. Geophysical Journal International Vol. 165,
729–743.

[22] Straume. T., J. H. Nilsen,T. A McClimans, and B. Gjevik, (1994), Circulation
around Bear Island in the Barents Sea: Numerical and laboratory simulations. An-
nales Geophysicae, Vol. 12 suppl. II, C 277, Abstract to EGS-General Assembly,
Grenoble.

[23] Thomson, W. (lord Kelvin) (1868) Report of Committee for the Purpose of Har-
monic Analysis of Tidal Observations. British Association for the Advancement of
Science, London.

[24] Tidevannstabeller for den norske kyst med Svalbard (2013), Statens Kartverk,
Sjøkartverket, Stavanger.

[25] Tverberg, V., H. Cushman-Roisin and H. Svendsen, (1991) Modeling internal tides
in fjords J. Marine Res. 49, 635-658.

[26] Vinje. T., H. Jensen, A. S. Johnsen, S. Løset, S. E. Hamran, S. M. Løvas , and B.
Erlingsson, (1989), IDAP-89 R/V Lance deployment. Vol. 2; Field observations and
analysis. Norwegian Polar Research Institute, Oslo and SINTEF/NHL,Trondheim
80pp.

35


